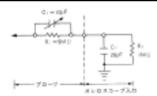
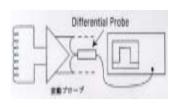

プローブの種類・特徴/用途 2006/6						
用途	種類	一般名称	周波数帯域(-3dB)*8	倍率(減衰比)*9	入力容量(R、C)*10	入力耐圧(DC+ACピーク、rms)*11
電圧波形計測	受動プローブ *1	標準/汎用 プローブ	DC~500Mhz、1:1では DC~数Mhz	1:1や10:1、両方の切替付等。	1M (1:1), 10M (10:1)	400V~600V以下
			最も一般的なプローブ。10:1プローブでは10M 、10pF前後の入力容量で周波数帯域別に揃っている。1:1プローブは1M 入力で10Mhz以下の帯域となる。右中図は10:1接続回路図			
		同単圧ノローノ	DC~数10Mhz(100Mhz以下)	100:1, 1000:1	10M (100:1), 500M (1000:1)	2KV(中電圧), 20-30KV
			数kVの中電圧から20KVから30KVの高電圧計測可能。中電圧プローブの帯域はDC~250Mhz程度。 絶縁・安全の為、形状は大きい。50KV以上のデバイダ(分圧器)型もある。			
		低インピーダンス プローブ*3	DC~数Ghz	10:1, 20:1, 100:1	500 、1K 等	数10V
			低インピーダンス回路(例えばECL、CMOS等半導体回路)計測。被測定回路に500 や1K の負荷が掛かる。低容量の為、Ghzの高周波まで計測可能。			
	能動プローブ · *2	+ 4	DC~数Ghz	1mV~数V、5:1,10:1,25:1等	数10K ~1M 程度	数10V
			入力にFETを用いたアンプ内臓型のプローブ。低負荷(低容量)で、数Ghzまで計測可能。ダイナミックレンジが小さいので小信号向き。DCオフセット付きが多い。			
		差動フローフ *5	DC~数百Mhz(高電圧型),数Ghz(広帯域型)	高圧型は数KVまで、広帯域型1mV~数V切替	数M 、1M (広帯域型)	数KV(高圧型)、数10V(広帯域型)
			+、-の2つの入力を持ったFETアンプ内臓型プローブで出力は+、-の差が出る。ノイズの除去(CMRR)*13、高精度に信号の差を観測できる。			
			· · · · · · · · · · · · · · · · · · ·	電源回路や高速半導体·伝送路の計測。2チャンネ	ル入力のオシロで簡易差動計測可能。	
電流波形計測	*1	AC電流プローブ *6	数hz~数Mhz	1mA~数百mA		直接接触しない
			交流(AC電源波、パルス・サイン・三角波等)電流のみ計測可能。センサーはスプリットコア型トランスフォーマー。アースを基準としない。			
			交流成分の信号をトランスで変換し、電流値としてオシロへ導く。数ミリアンペア ~ 数アンペア計測可能。コアに通電導体を巻けばそれに応じて感度が上がる。			
			丸形クランプやスライドスティック型がある。カレン	ントトランスを追加すれば数百A計測可能。電流のI	向(+、-)に合わせてクランプする。	
	能動プローブ *2	AC/DC電流 プローブ*7	DC~数10Mhz	1 m A ~ 数 A		直接接触しない
			交流成分と変化しなNDC成分の両方の電流を計測可能。DC電流センサーにはホール素子を用いアンプ形式のプローブ。			
			プローブヘッドは丸形クランプやスライドスティック型がある。カレントトランスを追加すれば数百A計測可能。コアに通電導体を巻けばそれに応じて感度が上がる。			
			アースを基準にしなくて良い。 電流の向(+、-)	こ合わせてクランプする。 DCオフセット電流除去にI	はバッキングコイルで逆電流を流す。	




*** プローブの効用:被測定物に出来るだけ負荷を掛けず、忠実に信号をオシロスコープへ導く事が出来る。 (高抵抗値、低容量、低歪・高忠実、軽量・小型・安全・柔軟・取扱容易)

- *1 パッシブ(Passive)プローブとも言う。信号を受けてオシロへ導く。(アンプを持たないため高抵抗・高容量のため、高周波になるに従い帯域が減衰する)
- *2 アクティブ(Active)プローブとも言う。アンプを通してオシロへ導く。FET入力のため低負荷(低容量)で、アンプの出力は50 と低くGhzの高周波まで通す。
- *3 ローインピーダンス(low impedance)プローブ。低インピーダンス(低抵抗・低容量)のため高周波まで通す。被測定回路に抵抗の負荷が掛かる。50 入力オシロに最適。
- *4 FET(Field Effect Transister:電界効果トランジスタ)。入力は1M から10M 、2pF程度と負荷は軽く、出力は低インピーダンスで高周波まで通す。
- *5 ディファレンシャル(Differetial)プローブとも言う。 高CMRR(Common Mode Rejection Ratio)でノイズ等の同相成分の除去に優れている。 右下の計測図参照。
- *6 クランプ(Clamp)型のスプリットコアトランスを用いて、通電導体を挟み込む形式。コアに通電導体を巻けばそれに応じて感度が上がる。
- *7 クランプトランス内にホール素子を内臓。通電導体から出ている電磁界の変化をホール素子で電圧に変換しDC電流を測る。
- *8 周波数帯域/バンドパス(Band Width/Band Pass)は-3dB点(70.7%)。最近はオシロと組み合わせた**システムパンドパスが**表示される。100Mhzオシロにはシステムバンドパス100MhzプローブでOK。
- *9 1:1 信号は分圧されないでオシロへ導かれる=スルーの状態。入力は1M だが、容量が大きいので帯域は10Mhz以下。 (プローブのみのバンドパスはオシロの数倍必要) 10:1、信号は10分の1に分圧されてオシロへ導かれる。オシロで10倍に増幅すれば500Mhz迄の広帯域の1:1プローブとみなせる。

Readout coding機能 = 10:1のプローブをオシロのBNCへ繋ぐと自動的にオシロの電圧軸スケールが10:1へ変化する機能を持ったプローブ(100mV/div=>1V/div)

- *10 容量(キャパシタンス)は数10pF(ピコファラッド)から1pF(FET型)。汎用型の入力抵抗値は1M (1:1)又は10M (10:1)。
- *11 DC+ACピーク電圧、又はrms電圧。差動プローブは+、-入力間、アース間の耐圧以内で使用する。高周波になるに従い耐圧は減少する。減少曲線をデレーティングカーブと言う。
- *12 フローティング測定:アース/グラウンドから浮かせて計測可能。但し、被測定物の筐体等とオシロはノイズ低減・安全の為、共通アースを取る
- *13 上記*5参照
- CAL CAL(Calibration:校正)オシロへ装着時プローブの入力のRとC(容量可変可)をオシロの入力のRとCに整合させる。Rp:Cp=Ro:Co。左図の左側が校正された波形
 - * その他のプローブ:ロジックプローブ(ロジックアナライザ用)、温度プローブ、光プローブなど。
 - * 周波数帯域(BP)と立上り時間(Rt): Rt(nS)=0.35/BP(Ghz)、例;350Mhzオシロやプローブの立ち上がりは1nS。 (Ghz帯DSOでは0.35が0.4程度になる)

